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ABSTRACT

Due to their remarkable convergence properties and performance in practice, conjugate gradient (CG) methods are widely used for solving unconstrained
optimisation problems, especially those of large scale. From the 1950s until now, many studies have been carried out to propose new ones to improve existing
CG methods. In this paper, we present a condition that guarantees the global convergence of CG methods when they are applied under the exact line search. At
the same time, based on this condition, we did a minor modification on the CG methods of Polak-Rebiere-Polyak (PRP) and of Hestenes-Stiefel (HS) to propose
new modified methods. Furthermore, to support the theoretical proof of the global convergence of the modified methods in practical computation, a numerical
experiment based on comparing the proposed methods with other well-known CG methods was done. It has been found that the new modified methods have
the fewest number of iterations and require the shortest time for solving the problems. In addition, they have the highest percentage of the test problems that
solved successfully. Hence, we conclude that they can be used successfully for solving unconstrained optimisation problems.
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1. Introduction

The conjugate gradients (CG) methods are one of the most widely
used methods for solving unconstrained optimisation problems,
especially those of large scale. The general formula of an
unconstrained optimisation problem is

min f(x) (1.1)

where f: R" = Ris a continuously differentiable function. Starting
from an initial pointxy € R", a nonlinear conjugate gradient
method generates a sequence of approximation points {xi} using
the iterative formula

Xk+1 = Xk +akdk, k=0,12,.. (12)

where ay > Qs a step length that is obtained by means of a one-
dimensional search direction method called line search, and dy is
the search direction which is computed as follows:

_— ifk =0,
dy = (1.3)
—gi ¥ Budiy,  ifk =1,

where By is known as the conjugate gradient coefficient and g, =
Vf (xy) is the gradient of the function f at xy,.

If the line search is exact, the step length ay is obtained in the
direction dy by the rule

f(Xk + akdk) = ml(I)] f(Xk + (Xdk) (1‘4)
az

which the orthogonality condition
grdg—1 = 0, (1.5)
is satisfied.

In addition, we note

grdy = —llgill (1.6)

that is, by combining (1.3) and (1.5) together.

There are other rules for finding oy > 0 that guarantee the global
convergence of a CG method. These rules are called the inexact line
search methods. The most popular one is expressed by Wolfe
conditions (Wolfe, 1969; Wolfe, 1971).

Different choices for the coefficient By lead to different CG methods,
such as the method of Fletcher-Reeves (1964 ), Dai-Yuan (2000)
and the Conjugate Descent (Fletcher, 1987), where coefficients are
respectively given by

FR _ _llgkll? DY _
KT gl (7B =
llgill®
) 1.8
df_, (8k—8k-1) (18)
cD llgkll®
S 19
k d-l£—1gk—1 ( )
where [|. || stands for the Euclidean norm of vectors. Clearly, (1.7),

(1.8) and (1.9) are identical when the line search used is exact line
search. However, the methods of Polak-Rebiere (1969) and Polyak
(1990), Hestenes-Stiefel (1952) and Liu-Storey (1992), whose
coefficients are respectively given by

BPRP — G )
k llgk—112

)

ﬁES _ 8k(8k—8k-1)

di_ (8k—8k-1)’

LS _ _ i (Bx—8k-1)
k d;l;—1gk—1 !

are also identical when exact line search used. Many studies have
been carried out to analyse the global convergence of conjugate
gradient methods under both exact and inexact line searches. The
global convergence of the FR(1.7) is known as Fletcher and Reeves
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(1964) method was established using both exact (Zoutendijk, 1970)
and inexact (Al-Baali, 1985) line search on general functions. The HS
(known as Hestenes-Stiefel (1952)) and PRP (known as Polak —
Ribiere-Polyak (1969)) methods share the common numerator
address, the jamming of the FR, that is, when jamming occurs
k1 = Gi, BES and BERP = 0, so thatdyyq = —ggiq. In other
words, the HS and PRP methods perform a restart when they
encounter a bad direction. This explains why HS and PRP perform
much better than the FR in practice. Nevertheless, as a consequence,
by the example of Powell er a/ (1984), the HS and PRP methods
may not converge, even if the line search is exact. Therefore, Powell
eral. (1986) suggested that BERP should be modified by

BERF* = max{BL*F, 0}
which is equivalent to

BERP A BRT 20

BERFt = (1.10)

0, otherwise.
Inspired by Powell's work, Gilbert and Nocedal (1992) proved the
convergence of the PRP+ method when the line search is strong and

the step length &, satisfies the sufficient descent property, and
showed that PRP+ performs better than PRP. Moreover, Gilbert and
Nocedal (1992) extended this by defining

1S if S >0
B =

0, otherwise,

(1.11)

and proved that the HS+ method is also convergent. The
convergence properties of the HS and PRP methods have been
studied by many researchers, e.g. Gonglin er a/ (2017), Wei er al.
(2006) and Wei et a/. (2006).

In the last years, in order to establish the global convergence and to
obtain superior numerical performance in practice, much effort has
been devoted to develop new conjugate gradient methods and to
modify well-known methods, such as the modifications by
Abdelrahman er a/ ( 2021) on the method in Rivaie era/ (2015) and
the modification of Abubakar er a/ (2022) on the Liu-Storey (LS)
method.

Rivaie er al (2012) proposed a new coefficient denoted by BRMIL

thatis

RMIL _ £ic(8k—8k-1)

L TN TER
and showed that the RMIL method can be used in practical
computation and is globally convergent when it is applied under
exact line search. However, Dai (2016) pointed out a mistake in the
steps of the global convergence proof. To guarantee the
convergence via exact line search, he suggested the modified RMIL+
method, in which the coefficient is given by

8k (8k—8k-1)

e if 0 = gEgk—l < ”gk”2

B = (112)

0, otherwise.

The global convergence of the RMIL method is essentially
dependent on the inequality

llgill?
0< RMIL <
shs I dic—q1I2’

as shown in Rivaie era/ (2012) and Dai (2016).

In addition, in 2020, based on (1.13), Yousif has proven the global
convergence of RMIL+ via strong Wolfe line search.

fork>1, (1.13)

Therefore, if we generalise inequality (1.13) for any CG coefficient
B with the following extension
2

0= Bl*( <C ”‘!iﬂ”z'
we expect to get better results. Furthermore, based on the condition
in (1.14) and for better convergence properties, we can obtain
modified CG methods by doing a little modification on any CG
coefficient in order to satisfy it (1.14).

for k > 1 and a real number C > 1, (1.14)

In this paper, we will prove that the global convergence to any CG
method satisfies the condition in (1.14) when itis applied under the
exact line search in Section 2. Based on this condition, we propose
new modified coefficients for both the PRP and the HS methods that
are in Section 3. In Section 4, in order to show the efficiency of the
modified versions of PRP and HS in practical computation, we
compare them with the PRP, HS, PRP+, FR, and RMIL methods. In
Section 5, we give a conclusion.

2. A Condition for the Coefficient B,

In this section, motivated by the denominator of Bf™* and the steps

of the proof in Yousif (2020) of the global convergence of RMIL+, we
will show that every CG method whose coefficient By satisfies the
condition in (1.14) is globally convergent when it is applied under
the exact line search for solving unconstrained optimisation
problems.

Next, we will prove the global convergence of the CG method,
whose coefficient is given by (1.14). Before that, we note if the
sequences {gy } and {d} } are generated by any CG method via the
exact line search:

llgi + dill* = (8x + di)" (8k + di).
= llgkll* + lldll* + 2gydy
= ligkll? + lldll* = 2llgill* (By using (1.6))
= lldll* — llgxll* @
Therefore,

ldill? > llgill?,

which means

llgxll?
<1. .
ldell® = 1 22)

In addition, we can obtain (2.2) by noting that

2
llgll* _ (gkdi)” _ llgkll?lldill? cos? 8y

Ndlz ~ Ndilz — [N E

Since 0 < cos? 0, < 1,we have

llgill* 2
<
Tl = llgkll?

which leads again to (2.2).

To prove the global convergence, we assume that the objective
function f(x) satisfies the following assumption.

Assumption 2.1

The level set Q = {x € R": f(x) < f(X,)} is bounded, where X is
the starting point.

In some neighborhood N of (, the objective function is
continuously differentiable, and its gradient is Lipschitz continuous;
namely, there exists a constantl > O such that ||g(x) — gl <
LIx=yll,¥xy €N.

From (ii) in Assumption 2.1, we have
llgreell = llgkll < lgker — gl < U llxisr — xill = Loelldiell-

Using the iterative formula (1.2) and the inequality (2.3), we come to
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llgrsll < Nldill(1 + 1 atmay) (2.3)
where g, is a user-supplied bound on the maximum step length
allowed in the practical computation.

Under Assumption 2.1, we have the following lemma, which was
proved by Zoutendijk (1970).

Lemma 2.1

We suppose that Assumption 2.1 holds. Consider any CG method of
the form (1.2) - (1.3), where dy is a descent search direction and ay
is a step length obtained by means of a one-dimensional search
direction. Then the following condition known as the Zoutendijk
condition holds

Yicollgkll? cos? 6, < oo, (24)
where 0y is the angle between dj and the steepest descent
direction —gj,.

The Zoutendijk condition (2.4) implies that

limllgkll2 cos?8, = 0.

This means if the angle 8y is bounded away from , there exists a

positive constant § such that

cos@, =6 >0,forall k,
or

tanf, < oo, forall.
It follows immediately

lim infllgyll = 0,
which guarantees the global convergence.
In addition, from (2.5) and (1.6), we have

llgll*
Yhe 0lau < oo, (2.5)

Now, substituting (1.14) in (1.3), gives
dy = =gk + Pixdk-1, k=1

Squaring both sides of the above equation and then using (1.5), we
come to

ldill? = llgill? + (B lldi—1 1%, k= 1.
From the definition of By in (1.14), we get

lldlI?
< llgl? + Cillgxll? k

> 1.

Therefore, using (2.1), we come to

BL > (ldk||2—||gk||2) -1 (ngk+dkllz)_ (2.6)

Il gkl Il gkl

Also, if 8y is the angle between dy and the steepest descent
direction — gy, then

—ngdk

gyl
From (1.6), we get

cos 8 =

Il gl
cos By = ”dk” (2.7)

Since the cosine is positive in the interval [O,E] and negative in
E,ﬂ], the equation (2.8) implies that 6 € [0,% .
From (2.7), we find

lldill = ligkllsec . (2.8)

Both (2.1) and (2.8) together lead to

dicll? dicll?=llgicll? +dil?
sec? ), —1 = I kII2 1 = ldull ||2gk|| _ llex 1Z|| . (29
llgl llgl llgxll

From the formula (2.6) of By and (2.9) above, we get

1 +d|? 1
Bl*< > = (M) = —(SeCZ
c c

1
G 0, —1) = Etanzﬁk. (2.10)

The following theorem establishes the global convergence.
Theorem 2.1

We suppose that Assumption 2.1 holds. Then the CG method, its
coefficient given by (1.14), is globally convergent under the exact
line search, thatis

lirlp inf||gyll = 0. (2.11)
Proof

The proof is by contradiction. It assumes that (2.11) does not hold;
then there exists a constant € > 0 and an integer k; such that

llgkll = & forallk = k,, (2.12)

which leads to

1
< =
IngIIZ <= forallk > k;. (2.13)
From (1.3), by squaring both sides of dj, + g = Brdj—1, we get
ldill? = ~llgill* - 2gicdic + B2 lldi—1I% (214)

Using (1.6) and substituting (1.14), we obtain

el < llgill2 + 2 hEsl (219)

Dividing both sides of (2.15) by [l gy I|*, we get

[EMIE 1 c2
4 .
e ||gk||2 112
From (2.2), since —— ||dk||2 < ”ngZ,We have
lldell® 1 c2

+—. 2.16
llgkll* ~ llgkll* ~ lgk-1l? (216)

Combining (2.13) and (2.16), we come to

lldel®> _ (1+C%)

, forallk>k;+ 1.

llgsll* 2
This means
llgill* €

lldlz ™ (1+C2y’

then

n Nl _
Zicste 11 a7 > O~ KD) ey

(1+C2)

llgicll* llgicll*
Since Y >
Yizo lldicll2 2 Yick, +1 [ENE

and

(oo} n
llgill* llgll* €’
E —=_ = lim E —>—11m(n k) = oo,
2 e 2 2
Ao [ldill? n Ao [l (1+C*)n-

we come to
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[oe]
llgll*

T S .
d 2
L Tld]

This contradicts (2.5). Therefore, the proof is completed.

3. Modified Versions for the PRP and HS
Methods

In this section, motivated by the proof of the global convergence in
Section 2, the outperformance of the PRP and the HS methods in
practical computations for the minimisers of functions, and by the
formulas in (1.10) and (1.11), we propose modified versions of the
PRP and HS methods, that is, to restrict the coefficients B]]ZRP and

BHS in order to satisfy the coefficient B, in (2.1) as follows:

2
e 0SB <p ||<Iz|1.gi|1|n2
BERP* = (3.1
0, otherwise,
and
HS ; HS llgxll®
s T
oo = (3.2)
0, otherwise,
where u > 1. Clearly the new proposed coeﬁ‘icients,BIIC)RP’k and

’I(-IS* satisfy the condition (2.1), that is,

2
0.< BPRP < C lIgkll

id ”2,fork > 1 and areal number C > 1,
k-1

and

llgill?
lldy—1112’
with g = C, so that both coefficients B£%P* and f5*can be
considered modified versions of BERF and BHS. This means, from
Theorem 2.1, the proposed CG methods PRP* and HS* are globally
convergent when they are applied under the exact line search.

We also note, like the PRP and HS methods, the PRP* and HS*
methods perform a restart when they encounter a bad direction, i.e.
when gy, approaches gx_;, then both SFRF* and phs approach
zero, so thatdy approaches —g,. Hence, we expect that they
perform better than the FR method in practice. Also, like PRP, HS, FR,
PRP+, and RMIL, both PRP* and HS* are globally convergent under
the exact line search as proved in Theorem 2.1, but it remains to
show their performance in practical computations. This will be done
in the next section.

0<pis < fork > 1 and a real number C > 1,

4. Numerical Results and Discussion

In this section, to show the efficiency of the PRP* and HS* methods
in practical computation when they are applied under the exact line
search, we compare them with the FR, PRP, HS, PRP+, and RMIL
methods. The comparison is based on solving 41 well-known
unconstrained optimisation problems; most of them are from Andrei
(2008). The test problems were implemented under low, medium,
and high dimensions, namely 2, 3, 4, 10, 50, 100, 500, 1000, and
10,000. To show the robustness, two different initial points for each
dimension were chosen. The comparison is based on the number of
iterations and the time (in seconds) of run (CPU) of each problem.
To do the comparison, a MATLAB coded program was run with a
stopping criterion set to lgrll < 107°. In Tables 1, 2, 3, and 4, we
report ‘Fail’ if a method failed to solve a problem. In Tables 1, 2, 3,
and 4, a method is considered to be failed, and we report ‘Fail’ if the
number of iterations exceeds 15.

Table 1: A comparison between FR, HS, PRP, and PRP+ for low dimensions

No. Test Problem Dim R HS PRP PRP+
: : NOI/ CPU NOI/ CPU NOI/ CPU NOI/ CPU
1 EXTENDED WHITE & 5 74/0.28 16/0.08 16/0.08 17/0.09
HOLST 283/0.88 30/0.15 30/0.15 46/0.22
2 NONSCOMP 2 50/0.24 10/0.07 10/0.07 9/0.06
915/3.72 12/0.08 14/0.09 14/0.09
19/0.11 30/0.15 13/0.08 22/0.12
3 THREE-HUMP 2 Fail 19/0.11 16/0.10 20/0.11
11/0.07 4/0.04 4/0.04 4/0.04
4 SIX-HUMP 2 8/0.06 8/0.06 8/0.06 9/0.08
37/0.22 15/0.10 11/0.08 9/0.07
5 CUBE 2 611/3.05 30/0.18 30/0.18 47/0.27
74/0.36 16/0.09 16/0.09 17/0.10
6 LEON 2 263/1.51 30/0.15 30/0.16 46/0.23
15/0.11 13/0.10 13/0.10 10/0.09
7 DIXON & PRICE 3 29/0.16 43/0.23 49/0.26 49/0.26
160/ 0.88 454/2.46 456/2.47 456/2.46
8 QUARTIC 4 271/1.46 460/ 2.48 365/1.97 365/1.97
Fail 139/0.71 139/0.71 139/0.71
K COLVILLE 4 34/0.20 82/0.40 82/0.40 92/0.46
2/0.02 3/0.03 3/0.03 3/0.03
10 EXTENDED MARATOS 4 548/2.31 27/0.14 21/0.12 30/0.17
Fail 1581/8.51 1581/8.51 1672/9.03
" EXTENDED POWELL 4 Fail 943/5.11 1207/6.53 1698/9.13
Fail 226/1.21 180/0.98 463/2.40
12 EXTENDED WOOD 4 Fail 199/1.05 259/1.36 209/1.12
15/0.10 7/0.05 7/0.05 8/0.06
13 FREUDENSTEIN & ROTH 4 27/0413 7/0.05 10/008 Fail
14 GENERALIZED 4 5/0.05 4/0.04 4/0.04 4/0.04
TRIDIAGONAL 2 Fail 9/0.08 9/0.08 10/0.09
15 GENERALIZED 10 36/0.22 27/017 27/017 27/017
TRIDIAGONAL 1 43/0.26 27/017 27/017 27/017
13/0.10 29/0.17 29/0.17 26/0.14
16 EXTENDED PENALTY 10 12/0.09 6/0.07 6/0.07 7/0.08
7/0.08 5/0.07 5/0.07 6/0.08
7 ARWHEAD 10 9/0.09 8/0.09 8/0.09 9/0.09
Fail 20/0.15 20/0.15 21/0.16
18 LARWHD 10 Fail 20/0.15 20/0.15 21/0.15
20/0.14 22/0.15 21/013 21/013
19 POWER 10 24/0.14 25/0.15 25/0.15 25/0.15
Table 2: A comparison between HS*, PRP*, and RMIL for low dimensions
HS* PRP* PRP* RMIL
No. Test Problem Dim. (n=10) n=10) (n=15)
NOI/ CPU NOI/ CPU NOI/ CPU NOI/ CPU
17/0.09 17/0.09 26/0.11 23/0.11
! EXTENDED WHITE & HOLST 2 28/0.12 32/0.16 25/0.11 24/0.10
2 NONSCOMP 2 9/0.06 9/0.06 11/0.08 15/0.10
15/0.10 15/0.10 15/0.10 16/0.12
19/0.11 22/0.12 22/0.12 14/0.09
3 THREE-HUMP 2 21/0.11 22/0.12 22/0.12 Fail
5/0.05 5/0.05 5/0.05 5/0.05
4 SIX-HUMP 2 8/0.06 8/0.06 8/0.06 8/0.06
10/0.07 10/0.07 10/0.07 32/0.20
5 CUBE 2 28/0.17 30/0.18 25/0.16 24/0.16
17/0.10 17/0.10 17/0.10 23/0.12
6 LEON 2 28/0.14 30/0.16 25/0.14 24/0.15
10/0.09 10/0.09 10/0.09 35/0.22
7 DIXON & PRICE 3 43/0.23 49/0.26 49/0.26 56/0.34
454/2.46 456/2.47 456/2.47 740/ 3.95
8 QUARTIC 4 460/ 2.50 365/1.99 365/1.97 804/4.31
139/0.71 139/0.71 139/0.71 375/1.88
K COLVILLE 4 92/0.46 92/0.46 92/0.46 290/1.93
2/0.02 2/0.02 2/0.02 3/0.03
10 EXTENDED MARATOS 4 26/0.14 26/0.14 29/0.16 18/0.11
1670/9.00 1672/9.03 528/2.89 Fail
b EXTENDED POWELL 4 1694/9.20 1698/9.13 1698/9.13 Fail
175/0.95 463/2.40 182/0.98 981/5.06
12 EXTENDED WOOD 4 372/1.92 209/1.12 85/0.46 1021/5.30
7/0.05 7/0.05 8/0.06 9/0.07
13 FREUDENSTEIN & ROTH 4 Fail Fail 9/0.07 Fail
14 GENERALIZED 4 4/0.04 4/0.04 4/0.04 4/0.04
TRIDIAGONAL 2 11/0.10 11/0.10 8/0.06 7/0.06
15 GENERALIZED 10 27/017 27/017 27/017 25/0.16
TRIDIAGONAL 1 27/047 27/017 27/017 27/0.18
26/0.14 26/0.14 16/0.11 20/0.13
16 EXTENDED PENALTY 10 6/0.07 6/0.07 6/0.07 20/0.13
5/0.07 5/0.07 5/0.07 6/0.08
17 ARWHEAD 10 9/0.09 9/0.09 9/0.09 10/0.10
50/0.29 17/0.13 17/0.13 19/0.12
18 LIARWHD 10 56/0.32 21/0.15 21/0.5 19/0.14
22/0.15 21/0.13 21/0.13 123/0.60
19 POWER 10 25/0.15 25/0.15 25/0.15 139/0.70
Table 3: A comparison between FR, HS, PRP, and PRP+ for medium and high dimensions
q FR HS PRP PRP+
Ne UpieiEn Dim- | Noi/cpu | Noi/cpu | Noi/ cpu | Noi/ cPu
50 Fail 283/1.12 | 283/1.12 | 283/1.12
1 FLETCHER 35/0.17 33/0.415 33/0.15 33/0.415
27/0.20 27/0.20 28/0.22 28/0.22
2 DIXON3DQ 50 31/0.24 30/0.23 33/0.25 33/0.25
55/0.27 7/0.07 7/0.07 7/0.07
3 Qn 50 306/1.28 Fail Fail Fail
116/ 0.60 70/0.36 70/0.36 70/0.36
4 Q2 50 613/2.86 55/0.29 55/0.29 55/0.29
5 1 50 38/0.21 39/0.22 38/0.21 38/0.21
Q 41/0.23 41/0.23 41/0.23 41/0.23
24/0.19 25/0.20 25/0.20 25/0.20
6 HAGER 100 21/0.21 25/0.20 25/0.20 25/0.20
Fail 842/5.56 | 842/5.56 | 841/5.52
7 | GENERALIZED ROSENBROCK | 100 11018/68.62 | 327/2.16 | 336/2.23 | 336/2.23
58/0.37 58/0.37 58/0.37 58/0.37
8 SUM SQUARE 100 61/0.38 61/0.38 61/0.38 61/0.38
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57005 | 6/005 | 6/005 | 57004
9 | GENERAUZED QUARTIC[16] | 100 | 17/5109 | o/0.08 | 9/008 | 6/005
58/044 | 66/043 | 677044 | 677044

10 RAYDAN'1 [16] 100 Fail 238/141 | 257/153 | 197/1.18
Fal 757086 | 35/067 | 42/080

12 Q2 500 Fail 46/082 | 46/082 | 44/080
/009 | 6/009 | 6/009 | 5/007

12 QUARTC 500 | 427044 | 107042 | 107042 | 77010
500 | 733/77.06 | 15/037 | 15/037 | 197047

452/11.00 | 13/032 | 13/033 | 13/0.33

13 | EXTENDEDTRIDIAGONALT | 4000 | g43/35.98 | 15/0.66 | 15/066 | 19/0.81
517/21.88 | 13/056 | 13/056 | 13/057

oo | 107073 | 5/008 | 5/008 | 5/008

13/045 | 9/011 | 9/011 | 9701

14| EXTENDED DENSCHNB 1000 | 107020 | /00 | 57010 | 5/0.10
13/022 | 9/021 | 9/021 | 9/0.21

000 | 2117233 [ 187022 | 187022 | 227027

56/064 | 20/025 | 20/025 | 19/0.24

15| EXTENDED ROSENBROCK 10000 | 22771823 | 19/158 | 197158 | 22/184
62/510 | 21/173 | 20/166 | 20/168

000 | 2937322 | 9/075 | 9/05 | 9/075

15/023 | 7/043 | 7/043 | 7/043

16 | EXTENDED HIMMELBLAU 10000 | 2532537 | 97095 | 9095 | 9/09s
16/165 | 7/073 | 7/073 | 7/073

000 | 357059 [ 77028 [ 177028 [ 177028

- STRAIT Fail 43/072 | 43/072 | 44/074
0000|3394 | 17719a | 77108 | a7/10

Fail 43/484 | 43/485 | 44/595

o0 | 7028 | &/008 | &/008 | 77012

175/224 | 9/044 | 9/043 | 9/015

18 SHALLOW o000| 197171 | 7084 | 77064 | 7706
190/16.93 | 10/0.89 | 10/089 | 9/085

000 | 757350 [ 707050 | 707050 | 1070550

Fai 10/049 | 10/0.49 | 9/044

19 EXTENDED BEALE 10000 Fail 10/435 | 10/435 | 10/4.35
Fail 10/418 | 10/423 | 9/384

Table 4: A comparison between HS*, PRP*, and RMIL for medium and high dimensions

HS* PRP PRP* RMIL
No. Test Problem Dim. (n=10) (n= l(l]} (n=25)
NOI/CPU | NOI/CPU | NOI/CPU | NoI/cPU
50 783/142 | 283/142 | 283/142 | 951/362
1 FLETCHER 33/015 33/045 | 33/045 35/0.17
777020 787022 | 28/022 | 889/539
2 DIXON3DQ 50 30/0.23 33/025 | 33/025 | 992/589
57009 77009 8/0.08 Fal
3 R 50 10/0.10 8/007 | 10/0.10 26/0.17
707036 707036 | 70/036 787042
4 Q2 50 55/0.29 55/029 | 55/029 69/0.38
N o 50 395/022 387027 | 38/0.21 59/037
Q 41/023 41/023 | 41/023 78/0.40
75/0.20 357020 | 25/020 | 25/020
6 HAGER 100 25/0.20 25/020 | 25/020 | 26/021
. GENERALIZED o 840/548 | 841/552 | 841/552 | 5179/3406
ROSENBROCK 327/216 | 336/223 | 394/260 | 7594/49.72
58/037 38/037 | 58/037 | 128/079
8 SUM SQUARE 100 61/0.38 61/038 | 61/038 | 146/0.90
5 GENERALIZED o0 57004 57004 57004 57005
QUARTIC [16] 6/005 6/005 6/005 9/0.08
567043 577044 | 677044 | 997097
10 RAYDAN'1 [16] 100 204/122 | 197/118 | 197/118 | 690/3.58
327080 35/086 | 43/081 58/0.10
" Q2 500 42/077 41/077 | 37/068 61/1.14
57007 57007 57007 5/0.09
12 QUARTC 500 7/0.10 7/0.10 6/0.09 10/0.12
B 97047 197047 | 407095 | 169/392
" EXTENDED 19/047 22/053 | 64/151 | 186/4.29
TRIDIAGONAL 1 1000 19/081 19/081 | s2/222 | 200/842
20/0.87 22/094 | 92/394 | 211/8.90
o0 57008 5/0.08 57008 57009
10/0.12 10/042 | 10/012 10/0.12
14| EXTENDED DENSCHNE 1000 5/0.10 5/0.10 5/0.10 6/0.12
10/017 10/017 | 10/018 10/0.17
000 7270327 357027 | 23/029 787034
1 EXTENDED 19/024 19/024 | 9/0.24 22/0.26
ROSENBROCK 10000 23/1.91 23/191 | 23/191 28/233
20/1.66 20/166 | 19/158 24/1.98
000 57015 57015 | 10/0.16 77013
1 EXTENDED 7/013 7/013 7/013 10/0.17
HIMMELBLAU 10000 9/095 9/095 | 10/105 8/0.84
8/084 8/0.84 8/0.84 10/.04
000 T770.28 177028 | 177028 38/0566
- STRAIT 45/076 44/073 | 44/073 66/1.09
10000 17/194 17/194 | 17/1.93 38/4.48
45/5.05 44/495 | 44/500 | 66/750
000 7702 7702 7702 76/037
18 SHALLOW 10/0.16 10/016 | 10/0.16 11/0.417
10000 8/0.74 8/0.74 8/0.74 20/258
10/0.89 10/0.89 | 10/0.89 12/1.08
000 117053 17053 | 12/057 5377
12/057 12/057 | 12/057 24/1.12
19| EXTENDED BEALE 10000 11/4.76 11/476 | 12/503 | 54/2312
12/502 12/502 | 12/502 | 26/11.03

As can be seen from Tables 1, 2, 3, and 4, PRP* with u = 5 solves all
test problems, so it reached 100%, whereas FR, HS, PRP, PRP+, PRP*
(with ¢ = 10), HS* (with ¢ = 10) and RMIL reached about 90%,
99%, 99%, 98%, 99%, 99%, and 95%, respectively. Therefore, based
on the ability of solving test problems, there is a little improvement
in PRP* with u = 5. Furthermore, based on the number of iterations

and the CPU time, we can show the performance of the CG methods
in Tables 1, 2, 3, and 4 by using the performance profile introduced
by Dolan and More (2002). According to Dolan and More,
benchmark results or performance profiles are formed by running a
method or a solver denoted by S on the test problem denoted by P
and recording the information in focus, such as the number of
iterations and CPU time. Assuming that 1 solvers and 1, problems
occur, for each problemp wherep € P and solver S wheres € S,
they termed

tp,s = Computing time (the number of iterations or CPU time) or
others required solving problem p by solver s.

Using a baseline for comparison, they compared the performance on
problem P by solver S with the best performance by any solver on
this problem, using the performance ratio:

Ty = —2
PS " min{ty s:ses}

Let us suppose that a parameter 1, = Tp,s for all p, s is chosen, and
Tp,s = T if solver S does not solve problem p. The performance of
solver S on any given problem might be of interest, but due to this,
they would prefer to obtain an overall assessment of the
performance of the solver, then it was termed as:

1.
tps = n—pstze{p € Pir, <t}

Thus, ps(t) was the probability for solver s € S that a performance
ratio 1, s was within a factor £ € R of the best possible ratio, and
then function pg was the cumulative distribution function for the
performance ratio. The performance profileps: R — [0,1] for a
solver was non-decreasing, piecewise, and continuous from the
right. The value of p5(1) is the probability that a solver will win over
the rest of the solvers. In general, the solver with the highest values
of ps(t) or at the top right of the figure represents the best solver.

Figure 1: The performance based on the NOI
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In Figures 1 and 2, PRP' represents PRP* with & = 5. An observation
on Figures 1 and 2 shows that HS, PRP, PRP+, HS* with u = 10, PRP*
with 4 = 10, and PRP* with 4 = 5 are almost identical. Furthermore,
their curves lie above the FR and RMIL curves. Therefore, the new HS*,
PRP*, and PRP* with i = 5 perform much better than both the FR
and RMIL methods. Moreover, since FR, CD(1.9) is known as

Yousif, 0.0.0., Abdelrahman, A,, Mohammed, M., Saleh, M.A. (2022). A sufficient condition for the global convergence of conjugate gradient methods for solving unconstrained optimissation problems. 7he Scientific Journal of King
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Conjugate Descent (Fletcher, 1987), and DY(1.8) is known as Dai-
Yuan (2000) are identical with exact line search, then HS*, PRP*, and
PRP*with 1 = 5 are also much better than the CD and DY methods.

5. Conclusion

In this paper, we presented a sufficient condition that guarantees the
global convergence of the CG methods via the exact line search.
Based on the new condition, we proposed new modified coefficients
for both the PRP and the HS methods, that is, by restricting their
values in order to satisfy the proposed condition. Moreover, to show
the efficiency of the modified coefficients of PRP and HS in practical
computation, we have compared them with the FR, HS, PRP, PRP+
and RMIL methods. The result of the comparison is that the new
ones perform almost as HS, PRP, and PRP+, much better than both
FR and RMIL, and a lot better than the CD and DY methods because
of the similarities of the FR, CD, and DY methods when the line
search is exact. Furthermore, HS* and PRP* are flexible, that is, a
certain choice for the value of [Lmay lead to the solution of an
optimisation problem as in Table 1 the PRP* with 1 = 5 solved all
problems but HS, PRP, PRP+, HS* with 4 = 10, and PRP* with u =
10 did not. Therefore, we conclude that the new modified methods
can be used successfully for solving optimisation problems, and they
are better than FR, CD, DY, RMIL in all and better than HS, PRP, and
PRP+ in some cases.
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