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ABSTRACT 
 

Due to their remarkable convergence properties and performance in practice, conjugate gradient (CG) methods are widely used for solving unconstrained 
optimisation problems, especially those of large scale. From the 1950s until now, many studies have been carried out to propose new ones to improve existing 
CG methods. In this paper, we present a condition that guarantees the global convergence of CG methods when they are applied under the exact line search. At 
the same time, based on this condition, we did a minor modification on the CG methods of Polak-Rebiere-Polyak (PRP) and of Hestenes-Stiefel (HS) to propose 
new modified methods. Furthermore, to support the theoretical proof of the global convergence of the modified methods in practical computation, a numerical 
experiment based on comparing the proposed methods with other well-known CG methods was done. It has been found that the new modified methods have 
the fewest number of iterations and require the shortest time for solving the problems. In addition, they have the highest percentage of the test problems that 
solved successfully. Hence, we conclude that they can be used successfully for solving unconstrained optimisation problems. 
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1. Introduction  

The conjugate gradients (CG) methods are one of the most widely 
used methods for solving unconstrained optimisation problems, 
especially those of large scale. The general formula of an 
unconstrained optimisation problem is 

min
x∈Rn

f(x)                                                                                          (1.1) 

where f: Rn → R is a continuously differentiable function. Starting 
from an initial point x0 ∈ 𝑅𝑛 , a nonlinear conjugate gradient 
method generates a sequence of approximation points {xk} using 
the iterative formula 

xk+1 = xk + αkdk,     k = 0, 1, 2, …,                                (1.2) 

where αk > 0 is a step length that is obtained by means of a one-
dimensional search direction method called line search, and dk is 
the search direction which is computed as follows: 

dk = {

−gk,                           if k = 0,

−gk + βkdk−1,        if k ≥ 1,
                                                               (1.3) 

where 𝛽𝑘  is known as the conjugate gradient coefficient and 𝑔𝑘 =
𝛻𝑓(𝑥𝑘) is the gradient of the function 𝑓 at 𝑥𝑘 .  
If the line search is exact, the step length αk is obtained in the 
direction dk by the rule 

f(xk + αkdk) = min
α≥0

 f(xk + αdk)                                              (1.4) 

which the orthogonality condition 

gk
Tdk−1 = 0,                                                                                            (1.5) 

is satisfied.  
In addition, we note 

gk
Tdk = −‖gk‖2,                                                                                  (1.6) 

that is, by combining (1.3) and (1.5) together. 
There are other rules for finding αk > 0 that guarantee the global 
convergence of a CG method. These rules are called the inexact line 
search methods. The most popular one is expressed by Wolfe 
conditions (Wolfe, 1969; Wolfe, 1971). 
Different choices for the coefficient βk lead to different CG methods, 
such as the method of Fletcher-Reeves (1964 ), Dai-Yuan (2000) 
and the Conjugate Descent (Fletcher, 1987), where coefficients are 
respectively given by 

βk
FR =

‖gk‖2

‖gk−1‖2,                                                                                        (1.7)  βk
DY =

‖gk‖2

dk−1
T (gk−gk−1)

,                                                                                (1.8) 

βk
CD = −

‖gk‖2

dk−1
T gk−1

,                                                                                 (1.9) 

where ‖. ‖ stands for the Euclidean norm of vectors. Clearly, (1.7), 
(1.8) and (1.9) are identical when the line search used is exact line 
search. However, the methods of Polak-Rebiere (1969) and Polyak 
(1990), Hestenes-Stiefel (1952) and Liu-Storey (1992), whose 
coefficients are respectively given by 

βk
PRP =

gk
T(gk−gk−1)

‖gk−1‖2 ,                                          

βk
HS =

gk
T(gk−gk−1)

dk−1
T (gk−gk−1)

,                                                 

βk
LS = −

gk
T(gk−gk−1)

dk−1
T gk−1

,                                                 

are also identical when exact line search used. Many studies have 
been carried out to analyse the global convergence of conjugate 
gradient methods under both exact and inexact line searches. The 
global convergence of the FR(1.7) is known as Fletcher and Reeves 
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(1964) method was established using both exact (Zoutendijk, 1970) 
and inexact (Al-Baali, 1985) line search on general functions. The HS 
(known as Hestenes-Stiefel (1952)) and PRP (known as Polak –
Ribiere-Polyak (1969)) methods share the common numerator 
address, the jamming of the FR, that is, when jamming occurs 
𝑔𝑘+1 ≈ 𝑔𝑘 , 𝛽𝑘

𝐻𝑆  and 𝛽𝑘
𝑃𝑅𝑃 ≈ 0, so that 𝑑𝑘+1 = −𝑔𝑘+1. In other 

words, the HS and PRP methods perform a restart when they 
encounter a bad direction. This explains why HS and PRP perform 
much better than the FR in practice. Nevertheless, as a consequence, 
by the example of Powell et al. (1984), the HS and PRP methods 
may not converge, even if the line search is exact. Therefore, Powell 
et al. (1986) suggested that 𝛽𝑘

𝑃𝑅𝑃  should be modified by 

  𝛽𝑘
𝑃𝑅𝑃+ = 𝑚𝑎𝑥{𝛽𝑘

𝑃𝑅𝑃 , 0} 

which is equivalent to 

𝛽𝑘
𝑃𝑅𝑃+ = {

𝛽𝑘
𝑃𝑅𝑃           if  𝛽𝑘

𝑃𝑅𝑃 ≥ 0        

0,               otherwise.    

                       (1.10)  

Inspired by Powell's work, Gilbert and Nocedal (1992) proved the 
convergence of the PRP+ method when the line search is strong and 
the step length 𝛼𝑘 satisfies the sufficient descent property, and 
showed that PRP+ performs better than PRP. Moreover, Gilbert and 
Nocedal (1992) extended this by defining 

𝛽𝑘
𝐻𝑆+ = {

𝛽𝑘
𝐻𝑆           if  𝛽𝑘

𝐻𝑆 ≥ 0           

0,               otherwise,                 

                    (1.11)  

and proved that the HS+ method is also convergent. The 
convergence properties of the HS and PRP methods have been 
studied by many researchers, e.g. Gonglin et al. (2017), Wei et al. 
(2006) and Wei et al. (2006). 
In the last years, in order to establish the global convergence and to 
obtain superior numerical performance in practice, much effort has 
been devoted to develop new conjugate gradient methods and to 
modify well-known methods, such as the modifications by 
Abdelrahman et al. ( 2021) on the method in Rivaie et al. (2015) and 
the modification of Abubakar et al. (2022) on the Liu-Storey (LS) 
method.  

Rivaie et al. (2012) proposed a new coefficient denoted by βk
RMIL, 

that is 

 βk
RMIL =

gk
T(gk−gk−1)

‖dk−1‖2 ,  

and showed that the RMIL method can be used in practical 
computation and is globally convergent when it is applied under 
exact line search. However, Dai (2016) pointed out a mistake in the 
steps of the global convergence proof. To guarantee the 
convergence via exact line search, he suggested the modified RMIL+ 
method, in which the coefficient is given by 

βk
RMIL+ = {

gk
T(gk−gk−1)

‖dk−1‖2          if 0 ≤ gk
Tgk−1 ≤ ‖gk‖2   

0,                                  otherwise.       

  (1.12) 

The global convergence of the RMIL method is essentially 
dependent on the inequality 

0 ≤ βk
RMIL ≤

‖gk‖2

‖dk−1‖2 , for k ≥ 1,                                               (1.13) 

as shown in Rivaie et al. (2012) and Dai (2016).  
In addition, in 2020, based on (1.13), Yousif has proven the global 
convergence of RMIL+ via strong Wolfe line search. 

Therefore, if we generalise inequality (1.13) for any CG coefficient 
βk

∗  with the following extension  

0 ≤ βk
∗ < C

‖gk‖2

‖dk−1‖2
, for k ≥ 1 and a real number C ≥ 1,                   (1.14) 

we expect to get better results. Furthermore, based on the condition 
in (1.14) and for better convergence properties, we can obtain 
modified CG methods by doing a little modification on any CG 
coefficient in order to satisfy it (1.14). 
In this paper, we will prove that the global convergence to any CG 
method satisfies the condition in (1.14) when it is applied under the 
exact line search in Section 2. Based on this condition, we propose 
new modified coefficients for both the PRP and the HS methods that 
are in Section 3. In Section 4, in order to show the efficiency of the 
modified versions of PRP and HS in practical computation, we 
compare them with the PRP, HS, PRP+, FR, and RMIL methods. In 
Section 5, we give a conclusion.     

2. A Condition for the Coefficient 𝛃𝐤    

In this section, motivated by the denominator of 𝛽𝑘
𝑅𝑀𝐼𝐿 and the steps 

of the proof in Yousif (2020) of the global convergence of RMIL+, we 
will show that every CG method whose coefficient βk

∗  satisfies the 
condition in (1.14) is globally convergent when it is applied under 
the exact line search for solving unconstrained optimisation 
problems.  
Next, we will prove the global convergence of the CG method, 
whose coefficient is given by (1.14). Before that, we note if the 
sequences {𝑔𝑘} and {𝑑𝑘} are generated by any CG method via the 
exact line search:  

‖g𝑘 + 𝑑𝑘‖2 = (g𝑘 + 𝑑𝑘)𝑇(g𝑘 + 𝑑𝑘),     

                    = ‖gk‖2 + ‖dk‖2 + 2gk
Tdk 

              = ‖gk‖2 + ‖dk‖2 − 2‖gk‖2                     (By using (1.6)) 

              = ‖dk‖2 − ‖gk‖2.                                                                                 (2.1) 

Therefore, 
‖dk‖2 ≥ ‖gk‖2, 

which means 

‖gk‖2

‖dk‖2
≤ 1.                                                                                            (2.2) 

In addition, we can obtain (2.2) by noting that 

‖gk‖4

‖dk‖2 =
(𝑔𝑘

𝑇𝑑𝑘)
2

‖dk‖2 =
‖gk‖2‖dk‖2 cos2 𝜃𝑘

‖dk‖2 .                                   

Since 0 ≤ cos2 𝜃𝑘 ≤ 1, we have 

‖gk‖4

‖dk‖2 ≤ ‖gk‖2,                                   

which leads again to (2.2). 
To prove the global convergence, we assume that the objective 
function f(x) satisfies the following assumption.  

Assumption 2.1 
i. The level set  Ω =  {x ∈ Rn ∶ f(x) ≤ f(x0)} is bounded, where 𝑥0  is 

the starting point. 
ii. In some neighborhood   N  of  Ω  , the objective function is 

continuously differentiable, and its gradient is Lipschitz continuous; 
namely, there exists a constant 𝑙 > 0 such that ‖g(x) − g(y)‖  ≤
𝑙 ‖x − y‖ , ∀ x, y ∈ N. 

From (ii) in Assumption 2.1, we have 

‖gk+1‖ − ‖gk‖ ≤ ‖gk+1 − gk‖  ≤ 𝑙 ‖xk+1 − xk‖ = 𝑙αk‖dk‖. 

Using the iterative formula (1.2) and the inequality (2.3), we come to 
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‖gk+1‖ ≤ ‖dk‖(1 + 𝑙 αmax)                                                           (2.3) 

where 𝛼𝑚𝑎𝑥  is a user-supplied bound on the maximum step length 
allowed in the practical computation. 
Under Assumption 2.1, we have the following lemma, which was 
proved by Zoutendijk (1970).  
Lemma 2.1 
We suppose that Assumption 2.1 holds. Consider any CG method of 
the form (1.2) - (1.3), where dk is a descent search direction and αk 
is a step length obtained by means of a one-dimensional search 
direction. Then the following condition known as the Zoutendijk 
condition holds 

∑ ‖gk‖2 cos2 𝜃𝑘 < ∞∞
k=0 ,                                                                                (2.4) 

where 𝜃𝑘  is the angle between 𝑑𝑘 and the steepest descent 
direction −𝑔𝑘 . 
The Zoutendijk condition (2.4) implies that 

lim
𝑘=0

‖gk‖2 cos2 𝜃𝑘 = 0.                                                  

This means if the angle 𝜃𝑘  is bounded away from 
𝜋

2
, there exists a 

positive constant 𝛿 such that  
cos 𝜃𝑘 ≥ δ > 0 , for all 𝑘,                                                  

or 
       tan𝜃𝑘 <  ∞,    for all. 
It follows immediately 

    lim inf
k→∞

‖gk‖ = 0, 

which guarantees the global convergence. 
In addition, from (2.5) and (1.6), we have 

∑
‖gk‖4

‖dk‖2 < ∞∞
k=0 .                                                                                     (2.5) 

Now, substituting (1.14) in (1.3), gives  

         dk = −gk + βk
∗ dk−1,    𝑘 ≥ 1. 

Squaring both sides of the above equation and then using (1.5), we 
come to 
     ‖dk‖2 = ‖gk‖2 + (βk

∗ )2‖dk−1‖2,    𝑘 ≥ 1. 

From the definition of 𝛽𝑘
∗ in (1.14), we get 

 ‖dk‖2                                   

< ‖gk‖2 + Cβk
∗ ‖gk‖2, 𝑘

≥ 1. 

Therefore, using (2.1), we come to 

βk
∗ >

1

𝐶
(

‖dk‖2−‖gk‖2

‖gk‖2
) =

1

𝐶
(

‖gk+dk‖2

‖gk‖2
).                                               (2.6) 

Also, if 𝜃𝑘  is the angle between 𝑑𝑘  and the steepest descent 
direction −𝑔𝑘 , then 

       cos 𝜃𝑘 =
−𝑔𝑘

𝑇𝑑𝑘

‖gk‖‖dk‖
. 

From (1.6), we get 

cos 𝜃𝑘 =
‖gk‖

‖dk‖
.                                                                                                            (2.7) 

Since the cosine is positive in the interval [0,
𝜋

2
] and negative in 

[
𝜋

2
, 𝜋], the equation (2.8) implies that 𝜃𝑘 ∈ [0,

𝜋

2
]. 

From (2.7), we find 

‖dk‖ = ‖gk‖sec 𝜃𝑘 .                                                                                          (2.8) 

Both (2.1) and (2.8) together lead to 

sec2 𝜃𝑘 − 1 =
‖dk‖2

‖gk‖2
− 1 =

‖dk‖2−‖gk‖2

‖gk‖2
=

‖gk+dk‖2

‖gk‖2
.           (2.9) 

From the formula (2.6) of βk
∗  and (2.9) above, we get 

βk
∗ >

1

𝐶
(

‖gk+dk‖2

‖gk‖2
) =

1

𝐶
(sec2 𝜃𝑘 − 1) =

1

𝐶
tan2𝜃𝑘 .                    (2.10) 

The following theorem establishes the global convergence.  
Theorem 2.1 
We suppose that Assumption 2.1 holds. Then the CG method, its 
coefficient given by (1.14), is globally convergent under the exact 
line search, that is 

lim inf
k→∞

‖gk‖ = 0.                                                                           (2.11) 

Proof 

The proof is by contradiction. It assumes that (2.11) does not hold; 
then there exists a constant 휀 > 0 and an integer 𝑘1 such that  

    ‖gk‖ ≥ ε, for all k ≥ k1,                                                                       (2.12) 

which leads to 

1

‖gk‖2 ≤
1

ε2 ,     for all k ≥ k1.                                                         (2.13) 

From (1.3), by squaring both sides of 𝑑𝑘 + 𝑔𝑘 = 𝛽𝑘
∗𝑑𝑘−1, we get 

‖dk‖2 = −‖gk‖2 − 2gk
Tdk + (βk

∗ )2‖dk−1‖2.                 (2.14) 

Using (1.6) and substituting (1.14), we obtain 

‖dk‖2 < ‖gk‖2 + C2 ‖gk‖4

‖dk−1‖2.                                                   (2.15)    

Dividing both sides of (2.15) by ‖𝑔𝑘‖4, we get 

‖dk‖2

‖gk‖
4 <

1

‖gk‖
2 +

C2

‖dk−1‖2
.     

From (2.2), since 1

‖𝑑𝑘‖2 ≤
1

‖𝑔𝑘‖2, we have 

‖dk‖2

‖gk‖4 <
1

‖gk‖2 +
C2

‖gk−1‖2.                                                                               (2.16) 

Combining (2.13) and (2.16), we come to 
‖dk‖2

‖gk‖4 <
(1+C2)

ε2 ,       for all k ≥ k1 + 1.      

This means 
‖gk‖4

‖dk‖2 >
ε2

(1+C2)
,  

then 

∑
 ‖gk‖4

‖dk‖2
n
k=k1+1 > (n − k1)

𝜀2

(1+C2)
.     

Since ∑  ‖gk‖4

‖dk‖2
∞
k=0 ≥ ∑

 ‖gk‖4

‖dk‖2
∞
k=k1+1  

and  

∑
 ‖gk‖4

‖dk‖2

∞

k=k1+1

= lim
n→∞

∑
 ‖gk‖4

‖dk‖2

n

k=k1+1

>
ε2

(1 + C2)
lim
n→∞

(n − k1) = ∞, 

 we come to         
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∑
 ‖gk‖4

‖dk‖2

∞

k=0

> ∞. 
 

This contradicts (2.5). Therefore, the proof is completed.                                                    

3. Modified Versions for the PRP and HS 
Methods 

In this section, motivated by the proof of the global convergence in 
Section 2, the outperformance of the PRP and the HS methods in 
practical computations for the minimisers of functions, and by the 
formulas in (1.10) and (1.11), we propose modified versions of the 
PRP and HS methods, that is, to restrict the coefficients βk

PRP  and 
βk

HS in order to satisfy the coefficient βk
∗  in (2.1) as follows: 

𝛽𝑘
𝑃𝑅𝑃∗ = {

𝛽𝑘
𝑃𝑅𝑃 ,       if 0 ≤ 𝛽𝑘

𝑃𝑅𝑃 < 𝜇
‖gk‖2

‖dk−1‖2                     

0,           otherwise,                                       

(3.1) 

and 

𝛽𝑘
HS∗ = {

𝛽𝑘
HS,           if  0 ≤ 𝛽𝑘

HS < 𝜇
‖gk‖2

‖dk−1‖2
                

0,               otherwise,                                     

        (3.2) 

where 𝜇 ≥ 1. Clearly the new proposed coefficients 𝛽𝑘
𝑃𝑅𝑃∗ and 

𝛽𝑘
𝐻𝑆∗ satisfy the condition (2.1), that is, 

0 ≤ 𝛽𝑘
𝑃𝑅𝑃∗ < C

‖gk‖2

‖dk−1‖2
, for k ≥ 1 and a real number C ≥ 1, 

and  

0 ≤ 𝛽𝑘
𝐻𝑆∗ < C

‖gk‖2

‖dk−1‖2 ,   for k ≥ 1 and a real number C ≥ 1, 

with 𝜇 = 𝐶 , so that both coefficients 𝛽𝑘
𝑃𝑅𝑃∗  and 𝛽𝑘

𝐻𝑆∗ can be 
considered modified versions of 𝛽𝑘

𝑃𝑅𝑃  and 𝛽𝑘
𝐻𝑆 . This means, from 

Theorem 2.1, the proposed CG methods PRP* and HS* are globally 
convergent when they are applied under the exact line search.  
We also note, like the PRP and HS methods, the PRP* and HS* 
methods perform a restart when they encounter a bad direction, i.e. 
when 𝑔𝑘  approaches 𝑔𝑘−1 , then both 𝛽𝑘

𝑃𝑅𝑃∗  and 𝛽𝑘
𝐻𝑆∗  approach 

zero, so that 𝑑𝑘  approaches −𝑔𝑘 . Hence, we expect that they 
perform better than the FR method in practice. Also, like PRP, HS, FR, 
PRP+, and RMIL, both PRP* and HS* are globally convergent under 
the exact line search as proved in Theorem 2.1, but it remains to 
show their performance in practical computations. This will be done 
in the next section. 

4. Numerical Results and Discussion 

In this section, to show the efficiency of the PRP* and HS* methods 
in practical computation when they are applied under the exact line 
search, we compare them with the FR, PRP, HS, PRP+, and RMIL 
methods. The comparison is based on solving 41 well-known 
unconstrained optimisation problems; most of them are from Andrei 
(2008). The test problems were implemented under low, medium, 
and high dimensions, namely 2, 3, 4, 10, 50, 100, 500, 1000, and 
10,000. To show the robustness, two different initial points for each 
dimension were chosen. The comparison is based on the number of 
iterations and the time (in seconds) of run (CPU) of each problem. 
To do the comparison, a MATLAB coded program was run with a 
stopping criterion set to ‖𝑔𝑘‖ < 10−6. In Tables 1, 2, 3, and 4, we 
report ‘Fail’ if a method failed to solve a problem. In Tables 1, 2, 3, 
and 4, a method is considered to be failed, and we report ‘Fail’ if the 
number of iterations exceeds 15. 

Table 1: A comparison between FR, HS, PRP, and PRP+ for low dimensions 
PRP+ PRP HS FR Dim. Test Problem No. NOI/ CPU NOI/ CPU NOI/ CPU NOI/ CPU 

17/ 0.09 
46/ 0.22 

16/ 0.08 
30/ 0.15 

16/ 0.08 
30/ 0.15 

74/ 0.28 
283/ 0.88 2 EXTENDED WHITE & 

HOLST 1 

9/ 0.06 
14/ 0.09 

10/ 0.07 
14/ 0.09 

10/ 0.07 
12/ 0.08 

50/ 0.24 
915/ 3.72 2 NONSCOMP 

 2 

22/ 0.12 
20/ 0.11 

13/ 0.08 
16/0.10 

30/ 0.15 
19/ 0.11 

19/ 0.11 
Fail 2 THREE-HUMP 3 

4/ 0.04 
9/ 0.08 

4/ 0.04 
8/ 0.06 

4/ 0.04 
8/ 0.06 

11/ 0.07 
8/ 0.06 2 SIX-HUMP 4 

9/ 0.07 
47/ 0.27 

11/ 0.08 
30/ 0.18 

15/ 0.10 
30/ 0.18 

37/ 0.22 
611/ 3.05 2 CUBE 5 

17/ 0.10 
46/ 0.23 

16/ 0.09 
30/ 0.16 

16/ 0.09 
30/ 0.15 

74/ 0.36 
263/ 1.51 2 LEON 6 

10/ 0.09 
49/ 0.26 

13/ 0.10 
49/ 0.26 

13/ 0.10 
43/ 0.23 

15/ 0.11 
29/ 0.16 3 DIXON & PRICE 7 

456/ 2.46 
365/ 1.97 

456/ 2.47 
365/ 1.97 

454/ 2.46 
460/ 2.48 

160/ 0.88 
271/1 .46 4 QUARTIC 8 

139/ 0.71 
92/ 0.46 

139/ 0.71 
82/ 0.40 

139/ 0.71 
82/ 0.40 

Fail 
34/ 0.20 4 COLVILLE 9 

3/ 0.03 
30/ 0.17 

3/ 0.03 
21/ 0.12 

3/ 0.03 
27/ 0.14 

2/ 0.02 
548/2.31 4 EXTENDED MARATOS 10 

1672/9.03 
1698/ 9.13 

1581/8.51 
1207/6.53 

1581/8.51 
943/5.11 

Fail 
Fail 4 EXTENDED POWELL 11 

463/ 2.40 
209/1.12 

180/ 0.98 
259/1.36 

226/ 1.21 
199/1.05 

Fail 
Fail 4 EXTENDED WOOD 12 

8/ 0.06 
Fail 

7/ 0.05 
10/ 0.08 

7/ 0.05 
7/ 0.05 

15/ 0.10 
27/ 0.13 4 FREUDENSTEIN & ROTH 13 

4/ 0.04 
10/ 0.09 

4/ 0.04 
9/ 0.08 

4/ 0.04 
9/ 0.08 

5/ 0.05 
Fail 4 GENERALIZED 

TRIDIAGONAL 2 14 

27/ 0.17 
27/ 0.17 

27/ 0.17 
27/ 0.17 

27/ 0.17 
27/ 0.17 

36/ 0.22 
43/ 0.26 10 GENERALIZED 

TRIDIAGONAL 1 15 

26/ 0.14 
7/ 0.08 

29/ 0.17 
6/ 0.07 

29/ 0.17 
6/ 0.07 

13/ 0.10 
12/ 0.09 10 EXTENDED PENALTY 16 

6/ 0.08 
9/ 0.09 

5/ 0.07 
8/ 0.09 

5/ 0.07 
8/ 0.09 

7/ 0.08 
9/ 0.09 10 ARWHEAD 17 

21/ 0.16 
21/ 0.15 

20/ 0.15 
20/ 0.15 

20/ 0.15 
20/ 0.15 

Fail 
Fail 10 LIARWHD 18 

21/ 0.13 
25/ 0.15 

21/ 0.13 
25/ 0.15 

22/ 0.15 
25/ 0.15 

20/ 0.14 
24/ 0.14 10 POWER 19 

Table 2: A comparison between HS*, PRP*, and RMIL for low dimensions 
RMIL PRP* 

(𝛍 = 𝟓) 
PRP* 

(𝛍 = 𝟏𝟎) 
HS* 

(𝛍 = 𝟏𝟎) Dim. Test Problem No. 
NOI/ CPU NOI/ CPU NOI/ CPU NOI/ CPU 
23/ 0.11 
24/ 0.10 

26/ 0.11 
25/ 0.11 

17/ 0.09 
32/ 0.16 

17/ 0.09 
28/ 0.12 2 EXTENDED WHITE & HOLST 1 

15/ 0.10 
16/ 0.12 

11/ 0.08 
15/ 0.10 

9/ 0.06 
15/ 0.10 

9/ 0.06 
15/ 0.10 2 NONSCOMP 

 2 

14/ 0.09 
Fail 

22/ 0.12 
22/ 0.12 

22/ 0.12 
22/ 0.12 

19/ 0.11 
21/ 0.11 2 THREE-HUMP 3 

5/ 0.05 
8/ 0.06 

5/ 0.05 
8/ 0.06 

5/ 0.05 
8/ 0.06 

5/ 0.05 
8/ 0.06 2 SIX-HUMP 4 

32/ 0.20 
24/ 0.16 

10/ 0.07 
25/ 0.16 

10/ 0.07 
30/ 0.18 

10/ 0.07 
28/ 0.17 2 CUBE 5 

23/ 0.12 
24/ 0.15 

17/ 0.10 
25/ 0.14 

17/ 0.10 
30/ 0.16 

17/ 0.10 
28/ 0.14 2 LEON 6 

35/ 0.22 
56/ 0.34 

10/ 0.09 
49/ 0.26 

10/ 0.09 
49/ 0.26 

10/ 0.09 
43/ 0.23 3 DIXON & PRICE 7 

740/ 3.95 
804/ 4.31 

456/ 2.47 
365/ 1.97 

456/ 2.47 
365/ 1.99 

454/ 2.46 
460/ 2.50 4 QUARTIC 8 

375/ 1.88 
290/ 1.93 

139/ 0.71 
92/ 0.46 

139/ 0.71 
92/0.46 

139/ 0.71 
92/ 0.46 4 COLVILLE 9 

3/ 0.03 
18/ 0.11 

2/ 0.02 
29/ 0.16 

2/ 0.02 
26/ 0.14 

2/ 0.02 
26/ 0.14 4 EXTENDED MARATOS 10 

Fail 
Fail 

528/2.89 
1698/9.13 

1672/9.03 
1698/9.13 

1670/9.00 
1694/9.20 4 EXTENDED POWELL 11 

981/5.06 
1021/5.30 

182/ 0.98 
85/ 0.46 

463/ 2.40 
209/ 1.12 

175/ 0.95 
372/1.92 4 EXTENDED WOOD 12 

9/ 0.07 
Fail 

8/ 0.06 
9/ 0.07 

7/ 0.05 
Fail 

7/ 0.05 
Fail 4 FREUDENSTEIN & ROTH 13 

4/ 0.04 
7/ 0.06 

4/ 0.04 
8/ 0.06 

4/ 0.04 
1/ 0.101 

4/ 0.04 
11/ 0.10 4 GENERALIZED 

TRIDIAGONAL 2 14 

25/ 0.16 
27/ 0.18 

27/ 0.17 
27/ 0.17 

27/ 0.17 
27/ 0.17 

27/ 0.17 
27/ 0.17 10 GENERALIZED 

TRIDIAGONAL 1 15 

20/ 0.13 
20/ 0.13 

16/ 0.11 
6/ 0.07 

26/ 0.14 
6/ 0.07 

26/ 0.14 
6/ 0.07 10 EXTENDED PENALTY 16 

6/ 0.08 
10/ 0.10 

5/ 0.07 
9/ 0.09 

5/ 0.07 
9/ 0.09 

5/ 0.07 
9/ 0.09 10 ARWHEAD 17 

19/ 0.12 
19/ 0.14 

17/ 0.13 
21/ 0.5 

17/ 0.13 
21/ 0.15 

50/ 0.29 
56/ 0.32 10 LIARWHD 18 

123/ 0.60 
139/ 0.70 

21/ 0.13 
25/ 0.15 

21/ 0.13 
25/ 0.15 

22/ 0.15 
25/ 0.15 10 POWER 19 

 
Table 3: A comparison between FR, HS, PRP, and PRP+ for medium and high dimensions 

PRP+ 
NOI/ CPU 

PRP 
NOI/ CPU 

HS 
NOI/ CPU 

FR 
NOI/ CPU Dim. Test Problem No. 

283/ 1.12 
33/ 0.15 

283/ 1.12 
33/ 0.15 

283/ 1.12 
33/ 0.15 

Fail 
35/ 0.17 

50 
 FLETCHER 1 

28/ 0.22 
33/ 0.25 

28/ 0.22 
33/ 0.25 

27/ 0.20 
30/ 0.23 

27/ 0.20 
31/ 0.24 50 DIXON3DQ 2 

7/ 0.07 
Fail 

7/ 0.07 
Fail 

7/ 0.07 
Fail 

55/ 0.27 
306/ 1.28 50 QP1 3 

70/ 0.36 
55/ 0.29 

70/ 0.36 
55/ 0.29 

70/ 0.36 
55/ 0.29 

116/ 0.60 
613/ 2.86 50 QF2 4 

38/ 0.21 
41/ 0.23 

38/ 0.21 
41/ 0.23 

39/ 0.22 
41/ 0.23 

38/ 0.21 
41/ 0.23 

50 
 QF1 5 

25/ 0.20 
25/ 0.20 

25/ 0.20 
25/ 0.20 

25/ 0.20 
25/ 0.20 

24/ 0.19 
21/ 0.21 100 HAGER 6 

841/ 5.52 
336/2.23 

842/ 5.56 
336/2.23 

842/ 5.56 
327/2.16 

Fail 
11018/68.62 100 GENERALIZED ROSENBROCK 7 

58/ 0.37 
61/ 0.38 

58/ 0.37 
61/ 0.38 

58/ 0.37 
61/ 0.38 

58/ 0.37 
61/ 0.38 100 SUM SQUARE 8 
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5/ 0.04 
6/ 0.05 

6/ 0.05 
9/ 0.08 

6/ 0.05 
9/ 0.08 

6/ 0.05 
11/ 0.10 100 GENERALIZED QUARTIC [16] 9 

67/ 0.44 
197/ 1.18 

67/ 0.44 
257/1.53 

66/ 0.43 
238/ 1.41 

68/ 0.44 
Fail 100 RAYDAN 1 [16] 10 

42/ 0.80 
44/ 0.80 

35/ 0.67 
46/ 0.82 

45/ 0.86 
46/ 0.82 

Fail 
Fail 500 QP2 12 

5/ 0.07 
7/ 0.10 

6/ 0.09 
10/ 0.12 

6/ 0.09 
10/ 0.12 

6/ 0.09 
12/ 0.14 500 QUARTC 12 

19/ 0.47 
13/ 0.33 
19/ 0.81 
13/ 0.57 

15/ 0.37 
13/ 0.33 
15/ 0.66 
13/ 0.56 

15/ 0.37 
13/ 0.32 
15/ 0.66 
13/ 0.56 

733/ 17.06 
452/11.00 
843/ 35.98 
517/ 21.88 

500 
 

1000 
 

EXTENDED TRIDIAGONAL 1 13 

5/ 0.08 
9/ 0.11 
5/ 0.10 
9/ 0.21 

5/ 0.08 
9/ 0.11 
5/ 0.10 
9/ 0.21 

5/ 0.08 
9/ 0.11 
5/ 0.10 
9/ 0.21 

10/ 0.13 
13/ 0.15 
10/ 0.20 
13/ 0.22 

500 
 

1000 
EXTENDED DENSCHNB 14 

22/ 0.27 
19/ 0.24 
22/ 1.84 
20/ 1.68 

18/ 0.22 
20/ 0.25 
19/ 1.58 
20/ 1.66 

18/ 0.22 
20/ 0.25 
19/ 1.58 
21/ 1.73 

211/ 2.34 
56/ 0.64 

227/ 18.23 
62/ 5.10 

1000 
 

10000 
EXTENDED ROSENBROCK 15 

9/ 0.15 
7/ 0.13 
9/ 0.95 
7/ 0.73 

9/ 0.5 
7/ 0.13 
9/ 0.95 
7/ 0.73 

9/ 0.15 
7/ 0.13 
9/ 0.95 
7/ 0.73 

243/ 3.22 
15/ 0.23 

253/ 25.37 
16/ 1.65 

1000 
 

10000 
EXTENDED HIMMELBLAU 16 

17/ 0.28 
44/ 0.74 
17/ 1.94 
44/ 5.95 

17/ 0.28 
43/ 0.72 
17/ 1.94 
43/ 4.85 

17/ 0.28 
43/ 0.72 
17/ 1.94 
43/ 4.84 

35/ 0.59 
Fail 

35/ 3.94 
Fail 

1000 
 

10000 
STRAIT 17 

7/ 0.12 
9/ 0.15 
7/ 0.65 
9/ 0.85 

6/ 0.08 
9/ 0.13 
7/ 0.64 

10/ 0.89 

6/ 0.08 
9/ 0.14 
7/ 0.64 

10/ 0.89 

18/ 0.24 
175/ 2.24 
19/ 1.71 

190/ 16.93 

1000 
 

10000 
SHALLOW 18 

10/ 0.50 
9/ 0.44 

10/ 4.35 
9/ 3.84 

10/ 0.50 
10/ 0.49 
10/ 4.35 
10/ 4.23 

10/ 0.50 
10/ 0.49 
10/ 4.35 
10/ 4.18 

75/ 3.50 
Fai 
Fail 
Fail 

1000 
 

10000 
EXTENDED BEALE 19 

 
Table 4: A comparison between HS*, PRP*, and RMIL for medium and high dimensions 

RMIL 
 

NOI/ CPU 

PRP* 
(𝛍 = 𝟓) 

NOI/ CPU 

PRP* 
(𝛍 = 𝟏𝟎) 
NOI/ CPU 

HS* 
(𝛍 = 𝟏𝟎) 
NOI/ CPU 

Dim. Test Problem No. 

951/3.62 
35/ 0.17 

283/ 1.12 
33/ 0.15 

283/ 1.12 
33/ 0.15 

283/ 1.12 
33/ 0.15 

50 
 FLETCHER 1 

889/ 5.39 
992/ 5.89 

28/ 0.22 
33/ 0.25 

28/ 0.22 
33/ 0.25 

27/ 0.20 
30/ 0.23 50 DIXON3DQ 2 

Fail 
26/ 0.17 

8/ 0.08 
0/ 0.101 

7/ 0.09 
8/ 0.07 

9/ 0.09 
10/ 0.10 50 QP1 3 

78/ 0.42 
69/ 0.38 

70/ 0.36 
55/ 0.29 

70/ 0.36 
55/ 0.29 

70/ 0.36 
55/ 0.29 50 QF2 4 

69/ 0.37 
78/ 0.40 

38/ 0.21 
41/ 0.23 

38/ 0.21 
41/ 0.23 

39/ 0.22 
41/ 0.23 

50 
 QF1 5 

25/ 0.20 
26/ 0.21 

25/ 0.20 
25/ 0.20 

25/ 0.20 
25/ 0.20 

25/ 0.20 
25/ 0.20 100 HAGER 6 

5179/34.06 
7594/49.72 

841/ 5.52 
394/2.60 

841/ 5.52 
336/2.23 

840/5.48 
327/2.16 100 GENERALIZED 

ROSENBROCK 7 

128/ 0.79 
146/ 0.90 

58/ 0.37 
61/ 0.38 

58/ 0.37 
61/ 0.38 

58/ 0.37 
61/ 0.38 100 SUM SQUARE 8 

6/ 0.05 
9/ 0.08 

5/ 0.04 
6/ 0.05 

5/ 0.04 
6/ 0.05 

5/ 0.04 
6/ 0.05 100 GENERALIZED 

QUARTIC [16] 9 

99/ 0.91 
690/3.58 

67/ 0.44 
197/ 1.18 

67/ 0.44 
197/1.18 

66/ 0.43 
204/ 1.22 100 RAYDAN 1 [16] 10 

58/ 0.10 
61/ 1.14 

43/ 0.81 
37/ 0.68 

45/ 0.86 
41/ 0.77 

42/ 0.80 
42/ 0.77 500 QP2 11 

6/ 0.09 
10/ 0.12 

5/ 0.07 
6/ 0.09 

5/ 0.07 
7/ 0.10 

5/ 0.07 
7/ 0.10 500 QUARTC 12 

169/ 3.92 
186/ 4.29 
200/ 8.42 
211/ 8.90 

40/ 0.95 
64/ 1.51 
52/ 2.22 
92/ 3.94 

19/ 0.47 
22/ 0.53 
19/ 0.81 
22/ 0.94 

19/ 0.47 
19/ 0.47 
19/ 0.81 
20/ 0.87 

500 
 

1000 
 

EXTENDED 
TRIDIAGONAL 1 13 

6/ 0.09 
10/ 0.12 
6/ 0.12 

10/ 0.17 

5/ 0.08 
10/ 0.12 
5/ 0.10 

10/ 0.18 

5/ 0.08 
10/ 0.12 
5/ 0.10 

10/ 0.17 

5/ 0.08 
10/ 0.12 
5/ 0.10 

10/ 0.17 

500 
 

1000 
EXTENDED DENSCHNB 14 

28/ 0.34 
22/ 0.26 
28/ 2.33 
24/ 1.98 

23/ 0.29 
9/ 0.24 

23/ 1.91 
19/ 1.58 

22/ 0.27 
19/ 0.24 
23/ 1.91 
20/ 1.66 

22/ 0.27 
19/ 0.24 
23/ 1.91 
20/ 1.66 

1000 
 

10000 

EXTENDED 
ROSENBROCK 15 

7/ 0.13 
10/ 0.17 
8/ 0.84 
10/ .04 

10/ 0.16 
7/ 0.13 

10/ 1.05 
8/ 0.84 

9/ 0.15 
7/ 0.13 
9/ 0.95 
8/ 0.84 

9/ 0.15 
7/ 0.13 
9/ 0.95 
8/ 0.84 

1000 
 

10000 

EXTENDED 
HIMMELBLAU 16 

38/ 0.66 
66/ 1.09 
38/ 4.48 
66/ 7.50 

17/ 0.28 
44/ 0.73 
17/ 1.93 
44/ 5.00 

17/ 0.28 
44/ 0.73 
17/ 1.94 
44/ 4.95 

17/ 0.28 
45/ 0.76 
17/ 1.94 
45/ 5.05 

1000 
 

10000 
STRAIT 17 

26/ 0.37 
11/ 0.17 
29/ 2.58 
12/ 1.08 

7/ 0.12 
10/ 0.16 
8/ 0.74 

10/ 0.89 

7/ 0.12 
10/ 0.16 
8/ 0.74 

10/ 0.89 

7/ 0.12 
10/ 0.16 
8/ 0.74 

10/ 0.89 

1000 
 

10000 
SHALLOW 18 

52/ 2.41 
24/ 1.12 

54/ 23.12 
26/ 11.03 

12/ 0.57 
12/ 0.57 
12/ 5.03 
12/ 5.02 

11/ 0.53 
12/ 0.57 
11/ 4.76 
12/ 5.02 

11/ 0.53 
12/ 0.57 
11/ 4.76 
12/ 5.02 

1000 
 

10000 
EXTENDED BEALE 19 

 

As can be seen from Tables 1, 2, 3, and 4, PRP* with 𝜇 = 5 solves all 
test problems, so it reached 100%, whereas FR, HS, PRP, PRP+, PRP* 
(with 𝜇 = 10), HS* (with 𝜇 = 10) and RMIL reached about 90%, 
99%, 99%, 98%, 99%, 99%, and 95%, respectively. Therefore, based 
on the ability of solving test problems, there is a little improvement 
in PRP* with 𝜇 = 5. Furthermore, based on the number of iterations 

and the CPU time, we can show the performance of the CG methods 
in Tables 1, 2, 3, and 4 by using the performance profile introduced 
by Dolan and More (2002). According to Dolan and More, 
benchmark results or performance profiles are formed by running a 
method or a solver denoted by 𝑆 on the test problem denoted by 𝑃 
and recording the information in focus, such as the number of 
iterations and CPU time. Assuming that 𝑛𝑠 solvers and 𝑛𝑝 problems 
occur, for each problem 𝑝 where 𝑝 ∈ 𝑃 and solver 𝑠 where 𝑠 ∈ 𝑆, 
they termed 
       𝑡𝑝,𝑠 = Computing time (the number of iterations or CPU time) or 
others required solving problem 𝑝 by solver 𝑠. 
Using a baseline for comparison, they compared the performance on 
problem 𝑝 by solver 𝑠 with the best performance by any solver on 
this problem, using the performance ratio: 

𝑟𝑝,𝑠 =
𝑡𝑝,𝑠

𝑚𝑖𝑛{𝑡𝑝,𝑠:𝑠∈𝑆}
  

Let us suppose that a parameter 𝑟𝑀 ≥ 𝑟𝑝,𝑠  for all 𝑝, 𝑠 is chosen, and 
𝑟𝑝,𝑠 = 𝑟𝑀  if solver s does not solve problem 𝑝. The performance of 
solver 𝑠 on any given problem might be of interest, but due to this, 
they would prefer to obtain an overall assessment of the 
performance of the solver, then it was termed as: 

𝑡𝑝,𝑠 =
1

𝑛𝑝
𝑠𝑖𝑧𝑒{𝑝 ∈ 𝑃: 𝑟𝑝 ≤ 𝑡} 

Thus, 𝑝𝑠(𝑡) was the probability for solver 𝑠 ∈ 𝑆 that a performance 
ratio 𝑟𝑝,𝑠  was within a factor 𝑡 ∈ 𝑅 of the best possible ratio, and 
then function 𝑝𝑠 was the cumulative distribution function for the 
performance ratio. The performance profile 𝑝𝑠: 𝑅 → [0,1] for a 
solver was non-decreasing, piecewise, and continuous from the 
right. The value of 𝑝𝑠(1) is the probability that a solver will win over 
the rest of the solvers. In general, the solver with the highest values 
of 𝑝𝑠(𝑡) or at the top right of the figure represents the best solver. 

       Figure 1: The performance based on the NOI 

 
                  

Figure 2: The performance based on the CPU time 

 

In Figures 1 and 2, 𝑃𝑅𝑃′ represents PRP* with 𝜇 = 5. An observation 
on Figures 1 and 2 shows that HS, PRP, PRP+, HS* with 𝜇 = 10, PRP* 
with 𝜇 = 10, and PRP* with 𝜇 = 5 are almost identical. Furthermore, 
their curves lie above the FR and RMIL curves. Therefore, the new HS*, 
PRP*, and PRP* with 𝜇 = 5 perform much better than both the FR 
and RMIL methods. Moreover, since FR, CD(1.9) is known as 
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Conjugate Descent (Fletcher, 1987),   and DY(1.8) is known as Dai-
Yuan (2000)  are identical with exact line search, then HS*, PRP*, and 
PRP* with μ = 5 are also much better than the CD and DY methods. 

5. Conclusion 

In this paper, we presented a sufficient condition that guarantees the 
global convergence of the CG methods via the exact line search. 
Based on the new condition, we proposed new modified coefficients 
for both the PRP and the HS methods, that is, by restricting their 
values in order to satisfy the proposed condition. Moreover, to show 
the efficiency of the modified coefficients of PRP and HS in practical 
computation, we have compared them with the FR, HS, PRP, PRP+ 
and RMIL methods. The result of the comparison is that the new 
ones perform almost as HS, PRP, and PRP+, much better than both 
FR and RMIL, and a lot better than the CD and DY methods because 
of the similarities of the FR, CD, and DY methods when the line 
search is exact. Furthermore, HS* and PRP* are flexible, that is, a 
certain choice for the value of μ may lead to the solution of an 
optimisation problem as in Table 1 the PRP* with 𝜇 = 5 solved all 
problems but HS, PRP, PRP+, HS* with 𝜇 = 10, and PRP* with 𝜇 =
10 did not. Therefore, we conclude that the new modified methods 
can be used successfully for solving optimisation problems, and they 
are better than FR, CD, DY, RMIL in all and better than HS, PRP, and 
PRP+ in some cases. 
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